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1.0 INTRODUCTION 

Most aircraft engine manufacturers have developed empirical distortion factors which 
correlate engine stability degradation with the spatial variation of inlet recovery. Over 
the years these factors have evolved from simple parameters based on steady-state pressures 
to complicated formulations using instantaneous values of high-frequency bandwidth 
dynamic pressures with sampling rates comparable to the engine rotation frequency. The 
time-variant nature of inlet distortion has led to the use of a new descriptor, peak 
instantaneous distortion (which is the maximum magnitude of any particular distortion 
factor observed at a given test condition), and it is perhaps the major parameter for the 
definition of inlet/engine compatibility. Inlet development tests have also used the peak 
instantaneous distortion as a standard of comparison in various optimization cycles, 
selecting the geometry or bleed rate which yielded the lower distortion without 
compromising other performance criteria. However, as shown in Ref. 1, the peak 
instantaneous distortion is an inconsistent indicator of inlet performance since the observed 
magnitude is dependent on data acquisition time, and repeat test conditions can yield 
significantly different results even if data acquisition time were held constant. These facts 
are directly the result of distortion factors being random variables when calculated from 
stationary dynamic pressure measurements (stationary meaning, for the present application, 
that the average and root-mean-square are constant with respect to time). It is therefore 
necessary that probabilistic analysis tools be utilized to interpret inlet distortion data and 
thereby obtain a statistical prediction of the maximum distortion level for each test 
condition. 

The statistical analysis of Ref. 1 was based on Gumbel's (Ref. 2) first asymptotic 

distribution of extremes which postulates an unlimited distortion magnitude. This 
intuitively unacceptable requirement can be avoided by using a generalization of Gumbel's 
third asymptote which postulates an unknown upper bound to the distortion magnitude. 
Data from several inlet tests indicate that the generalized asymptote provides a better 
probabilistic model of distortion peaks than the first asymptote. 

This report presents examples of the application of Gumbel's asymptotic theory of 
extremes to data acquired in several inlet tests and illustrates the general statistical 
properties of various distortion factors. The distribution of extremes is characterized by 
a three-parameter Weibull distribution. The parameters are estimated by the method of 
maximum likelihood (Ref. 3, for example) using a modified Gauss-Newton iteration 
technique (Ref. 4). The effects of data acquisition time, frequency bandwidth, and sampling 
rate are discussed in context with Moore's similarity parameter, X, (Ref. 5) to indicate 
scalability of the dynamic inlet distortion data. The end result of these analyses is a 
recommended procedure for the prediction of maximum time-variant inlet distortion levels 
with error tolerance estimates to the desired degree of confidence. 
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2.0 BACKGROUND 

2.1 GENERAL DISCUSSION 

Recent aircraft and engine development programs for high-performance vehicles have 
pushed the problem of inlet/engine compatibility to the forefront of designer's concern. 
Enlarged Mach number-altitude-attitude operating envelopes have resulted in a decrease 
in the uniformity and an increase in the turbulence of the flow delivered to the engine 
while engine operating lines have been raised to achieve maximum practicable thrust levels. 
Working stall margins are minimal, and the major degradation of the surge line is allotted 
to inlet distortion. 

The inlet flow nonuniformity is usually expressed in terms of total-pressure distortion 
because of measurement ease. Typically, eight rakes of total-pressure probes with five to 
six probes per rake (see Fig. A-l) are used to measure the pressure profile of the inlet/engine 
interface plane of low-bypass turbofan installations. Experience with the B-70 and F-l 11 
programs (Refs. 6 and 7) has demonstrated that engines are sensitive to time-variant inlet 
distortion with minimum response times comparable to the compressor rotation period. 
Measurements of the engine face pressures are thus required with relatively high-frequency 
bandwidths for full-scale testing and wider bandwidths (inversely proportional to scale) 
for the sub-scale inlet development tests. Informal industry standards have evolved for 
the measurement and acquisiton of these data, the miniature transducers being housed 
in probes of the Hoeflinger-type (Ref. 8) and the data being recorded on 14-track analog 
tapes in multiplexed constant-bandwidth FM mode. Data acquisition times are typically 
equivalent to 2 to 3 minutes of full-scale inlet/engine operation for stationary test 
conditions. 

Real-time analog processors have been developed (Refs. 5 and 9) to calculate the 
various distortion factors (see Appendix A), screen the data, and locate the instant of 
time at which the maximum distortion occurred. If the test condition is considered 
sufficiently important, a short time segment of data containing the observed analog peak 
distortion is then digitally processed to achieve greater accuracy than available from the 
real-time processor and to obtain the engine-face pressure profile at the instant the peak 
distortion occurred. 

2.2 RANDOMNESS OF ENGINE-FACE PRESSURE PATTERNS 

An example of a typical distortion index which has been calculated from the digitized, 
time-varying engine-face total pressures for a two-dimensional inlet system is shown in 
Fig. 1. Constant-pressure contour maps are also given for the time-averaged (steady-state) 
data and for the instant of peak distortion wherein the lines represent the difference 
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Figure 1.   Representative digital instantaneous distortion results. 

between the local total pressure and the face average, normalized by the engine-face average 
pressure. The time-variant distortion fluctuates randomly about an average distortion level 
that is comparable to (but greater than*) the distortion calculated from steady-state 
instrumentation. At some instant, the relative maximum distortion for this time interval 
is noted, termed peak instantaneous distortion, and the associated engine-face pressure 
pattern may or may not be similar in shape to the steady-state pattern. For a low-turbulence 
inlet operating condition the pattern at the instantaneous peak distortion time is quite 
similar to the steady-state pattern shape, differing only in intensity level. Medium 
turbulence levels generally result in peak distortion patterns which vaguely resemble the 
steady-state shape, whereas for high-turbulence conditions, the pressure patterns at instants 
of peak distortion are quite dissimilar and agreement in shape with the steady-state pattern 
is a rare occurrence. 

•As a result of nonlinearities in all distortion factor formulations used for this report and the types of turbulence 
encountered, the mean level of distortion was always equal to or greater than the level computed from the mean 
pressures. As an example, imagine a turbulent flow field superimposed on a uniform (zero distortion) steady-state pressure 
pattern, for this case the average time-variant distortion level would be positive and increase with increasing turbulence 
levels. 
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A visual appreciation for the randomness of the total-pressure fluctuations may be 

gained from Fig. 2. This figure shows the end result of screening a long-time 
segment (minutes) of inlet operation via an analog computer, subsequently digitizing the 
recorded pressure data in the vicinity of the time of peak instantaneous distortion as 
indicated by the analog processor, and then digitally calculating the distortion as a function 
of time. For comparison, the steady-state and peak instantaneous distortion pressure 
patterns are shown, as well as the time histories of each individual measured total pressure 
referenced to the local steady-state pressure. The normalized pressure wave forms about 
the time of peak distortion show little spatial correlation and it is clear from this and 

other analyses that increasing turbulence levels would cause greater dissimilarity between 
the peak pattern and the steady-state pattern. Moreover, the basic randomness of the 
time-dependent flow results in the pressure pattern at the time of the instantaneous peak 
distortion being one sample from an uncountable population of patterns, hence the 
engine-face pressure pattern corresponding with the peak instantaneous distortion is not 
repeatable. The peak distortion pattern given in Fig. 2 may eventually be generated by 
that inlet again, but the only reproducible data in Fig. 2 are the steady-state pressures 
or other time-averaged quantities. 

The distortion factor methodology as developed by engine manufacturers is the result 
of correlating engine sensitivity to varied screen-generated pressure patterns with the 

objective of expressing engine surge margin as a function of distortion magnitude 
independently of pattern shape. Thus, inlet development testing can and should rely on 
the distortion factor methodology for assurance of inlet/engine compatibility without 

regard or concern about nonrepeatability of the instantaneous engine-face pressure patterns. 
However, the present report questions the current practice of engine qualification testing 
behind expensive screen simulation of the instantaneous pressure patterns obtained from 
sub-scale inlet model tests when the inlet may never generate that exact pattern again. 
Since qualification tests of engines subjected to representative extreme distortion patterns 
do provide necessary confidence with respect to inlet/engine compatibility, it is 
recommended that screens be designed with an approximate intensification of the 
steady-state distortion pattern. This could be a simple linear stretching of the pattern 
to a representative instantaneous distortion level or the "worst case projection" method 
of Kimzey and Mcllveen (Ref. 10). The latter procedure should be more representative 
since the turbulence distribution and phase relationships between pressure fluctuations are 
an integral part of the method. Any desired distortion level can be achieved by selection 
of the "crest factors" (ratio of peak-to-peak over rms level of individual pressures) so 

that assurance of inlet/engine compatibility via screen testing could be achieved at any 
desired level of confidence. The particular distortion level to be selected is the subject 

of this report. 
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Figure 2.  Typical engine-face total-pressure waveforms at the time of peak distortion. 
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2.3    RANDOMNESS OF DISTORTION  FACTORS 

Since the total-pressure fluctuations appear to be of a random nature and the various 
distortion factors are functions of those pressures, it follows that every distortion factor 
considered as a time sequence is representative of a stochastic process. Any instantaneous 
sample from that process is only one possible sample from an infinite population. In 
particular, the one observed peak instantaneous distortion within a finite observation or 
data acquisition time period is just that - one observation. Admittedly, if an engine stalls 
as a result of the distortion level, then that one observation assumes special significance. 
The major objective of this report is to offer a means for interpreting time-variant inlet 
distortion data obtained during inlet development tests, a period when no engine is present 
to do the job of interpreting distortion levels. 

The first step will be to estimate the probability distribution of a distortion factor. 

It is assumed that the inlet flow process is stationary, that is, the statistical properties 
of the distortion factor are invariant with time. It is further assumed that the process 

is ergodic so that these statistical properties may be estimated from a single time sequence 
and may be used to describe future realizations. For determination of inlet/engine 
compatibility one is interested in the maximum distortion levels, not with average levels, 
so that conventional methods of describing the distribution using central moments would 
not be appropriate. Gumbel's statistical theory of extreme values (Ref. 2) is used because 
in addition to the obvious suitability for analysis of maxima, it also eliminates the need 
to select a restrictive family of distributions a priori. 

3.0 PRINCIPLES OF  EXTREME-VALUE STATISTICS 

3.1     ASYMPTOTIC THEORY OF EXTREMES 

The theory of extremes is a study of the statistical properties of observations that 
are extreme in comparison to other values observed from the same population. An example, 
and Gumbel's prototype, is the water flow of a river where floods are considered as extreme. 
Gumbel's theory of extremes provides the analysis tool for estimating the sizes of future 
floods. For the present study, the maximum observed distortion during a period of time 
is considered as an extreme value. 

The starting point* for the theory of extremes is the distributional properties of 
the maximum of n independent observations from the same population. Let Xi, X2, ..., 

♦Gumbells remark seems appropriate - "the exact distributions of extreme values arc easy to obtain and well 
known. Yet every new worker in the vast field of breaking strength appears to find it necessary to derive them over 
and over again." 

10 
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Xn denote n observations from the same parent population and let X be the maximum 
of Xj. The cumulative probability function of X is then given by 

F(x) = Prob (X < x) 

= Prob (all Xj < x) (]) 

= ft Prob (Xi < x) 
i=l 

= *n  (x) 

Thus, the distribution F(x) of the maximum of n observations is easily related to the 
distribution <J> (x) of the parent population. The practicality of this expression is limited 
to cases where the original distribution is known. The major contribution from the theory 
of extremes is that, for large n, the distribution F(x) has a known asymptotic form. Gumbel 
(Ref. 2) gives three asymptotic forms depending upon assumptions about the nature of 
the parent or initial distribution $(x). 

Gumbel's first asymptote postulates an initial distribution which is unlimited to the 
right with all moments existing (e.g. normal, exponential) and can be written with two 
parameters, aj, as 

Fx(x) = exp [- exp [-a!(x-a2)]] (2) 

Gumbel's second asymptote postulates an initial distribution which is also unlimited 
to the right but with some or all moments undefined because of a large right tail (e.g. 
Cauchy) and can be written with two parameters, bj, as 

F2(x) = exp [- (bi/x)^] (3) 

Gumbel's third asymptote postulates an initial distribution which is limited to the 
right (e.g. Weibull reversed) and can be written with three parameters, q, as 

-EMT L?l - c2| 
Fj(x) = exp - I—-J (4) 

As given in Appendix B, all three asymptotes can be restated in a single generalized 
asymptotic distribution of extremes in the form 

_a-/3x-|i/u 
F(x) = exp -I—- (5) 

ra-fr-y 

11 
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In terms of application to distortion data, the ratio a/ß is the maximum level achievable, 
the parameter v may be thought of as the most frequently occurring extreme distortion 
level (mode), the parameter a represents approximately the rate of increase of distortion 
with the logarithm of time, and ß is the distinguishing parameter for the three asympototes 
(ß = 0 corresponds to the first asymptote, ß < 0 is the second asymptote, and |3 > 0 is the 
third asymptote.) 

Defining a reduced variate t as (where log represents natural logarithm), 

t = -log log 1/F(x) (6) 

the inverse of Eq. (5) can be written as 

-T-EH 
■ßt 

e (7) 

and the inverse of the first asymptote is the linear expression 

x = a2 + t/aL (8) 

where, for ß = 0, the generalized asymptote reduces to a = 1/ai  and v = a2. 

Although Ref. 1 recommended utilization of the first asymptote, further distortion 
data analyses in the form of Fig. 3 have shown the extremes of time-variant inlet distortion 
to be better described by the generalized asymptote. (Discussion of the procedure for 
generating the information contained in Fig. 3 is delayed until Section 5.3.) In this typical 
example, the distortion data clearly deviate from the first asymptote or straight line (j3 
= 0) and, for specific values of the parameters a, ß, and v the generalized (third) asymptote 
provides a good fit to the data. Given that the general asymptote is a good representation 
of the cumulative probability distribution of distortion extremes, there remains the problem 
of determining the parameters a, |3, and v. 

3.2    PARAMETER ESTIMATION 

The general asymptote describes a broad family of distributions dependent on the 
parameters a, ß, and v which in turn are an unknown function of the inlet flow processes 
and distortion factor formulation. This lack of knowledge is circumvented herein by 
postulating that one has observed N distortion extremes X;, each selected from a fixed 
time interval At, covering a total time period NAt of inlet operation. (Note that the time 
intervals are not necessarily contiguous.) 

12 
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Gumbel presents several methods for estimating the parameters and, although these 
methods were relatively simple to use, the resulting estimates were not satisfactory*. The 
authors also attempted parameter estimation with a nonlinear least squares fit to the 
cumulative distribution of the order statistic, the latter being given by 

F(x) = i/(N+l) (9) 

where the Xj are arranged in ascending order (X^ < X2 < ... < XN). The difficulties 
with this method arise from the fact that the elements of the order statistic are not 
independent. While ignoring this fact may still give reasonable parameter estimates, the 
interdependence must be used in determining the variance of the estimate. Even though 
this method was rejected, the cumulative distribution of the order statistic was retained 
as a visual aid for comparison with the distribution estimated parametrically. That is, the 
observed data are plotted (as in Fig. 3) using the ordered Xj versus ti where 

1     1      N+1 ^ = -log log —— 

The method of parameter estimation accepted by the authors used the principle of 
maximum likelihood. This method gave the best results, avoided the a priori selection 
of the asymptotic type, and yielded reasonable variance estimates. Details of the procedure 
are given in Appendix B. 

3.3    RETURN PERIOD 

Gumbel has developed a return period concept which enables interpretation of the 
probability levels (or magnitudes of the reduced variate) in terms of natural units of time, 
which makes comprehension somewhat easier. In functional form the return period is 
defined by 

T _ _1 = 1 
l-F(x) l-exp(-exp(-t)) <10) 

and represents the median number of observations necessary to obtain one value equal 
to or larger than x. Since the distortion extremes are selected from a specific time interval 
At, the number of observations T is also the number of time intervals, hence the return 
period represents the inlet operation time required to observe (on the average) one 
distortion extreme greater than x. 

'Simulated results showed large variances for the estimates, formulas for variances were not available for all methods, 
and in most cases the type of asymptote had to be selected a priori. 

14 
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If analysis of distortion data is attempted using two sets of observations from the 
same test condition with differing time intervals, then seemingly disparate results may 
be obtained as illustrated by Fig. 4a. The difficulty is that one of the parameters of 
the asymptotic distribution is a function of the time interval because the expected 
distortion level increases approximately* as the logarithm of time. As developed in 
Appendix B, consistent results can be obtained by redefining the reduced variate t for 
one set of data so that the curve is shifted laterally by the logarithm of the time interval 
ratio. For the example given in Fig. 4a, each extreme within the 28-point set was selected 
from a time interval twenty times longer than the extremes of the 20-point set, thus 
the shift should be log 20, and indeed this does yield consistent results. An alternate 
presentation (Fig. 4b), the recommended one, can be made using the return period (with 
physical units of time) which bypasses the necessity of maintaining a fixed time interval 
among multiple data sets. 

O.oe 
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Q 
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a.  Reduced variate concept 
Figure 4.  Interpretation of extreme-value statistics utilizing the reduced variate 

and return period concepts. 

'Exactly for the first asymptote. 

15 
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The results given in Fig. 4 also illustrate the power of extreme value statistics: one 
second of inlet distortion measurements can yield answers comparable to the results of 
a much longer time period of inlet operation. A short time segment of distortion data 
can be used to statistically predict future distortion levels. 

3.4    VARIANCE ESTIMATES 

One of the advantages of using the method of maximum likelihood for estimation 
of the three parameters of Eq. (5) was the ability to also estimate the variance (or-accuracy) 
of the result. As detailed in Appendix B, the intermediate results used in computation 
of the parameter estimates can be used to form the variance-covariance matrix of the 
three parameters. Expansion of Eq. (7) by a Taylor series about any desired probability 
level then allows estimation of the variance of the distortion corresponding to that 
probability level. Since the probability level can be related to the return period, one can 
therefore estimate the variance of the expected peak distortion corresponding to any time 
period of inlet operation. 

16 
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Since the parameters are asymptotic normally distributed, one-sigma tolerance bands 
constructed from these variances represent nominally < 68-percent confidence levels. 
However, comparisons of the statistical prediction of a juture distortion level with an 
observed peak distortion data point require consideration1 of variance of this future 
observation. That is, the peak instantaneous distortion within a finite data acquisition 
time period is itself a random variable so that comparisons between the observed and 
predicted level must allow for variances from both sources. As detailed in Appendix B, 
the variance of the peak instantaneous distortion decreases with increasing data acquisiton 
time (provided ß > 0) so that for large times the observational variance is usually negligible 
relative to the parameter estimation variance. 

The one-sigma tolerance bands are of course dependent on the data and generally 
become smaller with increasing number of extremes. As an example, the effect of using 
5 extremes per second for the initial six and twelve seconds out of a two-minute record 
is illustrated by Fig. 5. The tolerance bands of Fig. 5b are clearly more narrow than 
those of Fig. 5a and, generally speaking, the bands decrease in proportion to \/N (N 
being the number of extremes) as they should for normally distributed parameters. The 
solid symbol in Fig. 5 is the peak instantaneous distortion for the full two minutes. Note 
that the one-sigma tolerance bands become larger with increasing return period and are 
smallest in the vicinity of t = 0. 

The mode or most probable distortion level is given by 

ym = a/0 - (a/0 - v)(l - W (11) 

and in the limit of ß -*■ 0, ym = v, which is the distortion magnitude at t = 0. Since 
most distortion data result in small J3 as will be shown and the estimation tolerance 
is near minimum at t = 0, the parameter v is termed the modal value and will be used 
herein as the major descriptor of peak distortion levels. 

The estimation tolerance is generally quite large for the limiting distortion level e 
' = a/ß when estimated from a practicable number of extremes. Typical tolerance results 
for e are ±100 percent when computed from 60 extremes selected from twelve seconds 
of distortion data akin to Fig. 5b, whereas tolerances on the order of ±5 percent may 
be expected from data like that of Fig. 3*. Therefore, one should generally not attempt 
extrapolation of the extreme-value results beyond more than, say, 100 times the basic 
observational time unless the tolerances indicate otherwise. 

*Due to inlet scale, Fig. 3 effectively represents approximately twelve times the total data quantity of Fig. 5b. 
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Figure 5.   Tolerance band dependence on data quantity. 
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To provide insight and an appreciation for the overall accuracy of the analysis, several 
examples are presented in Fig. 6, each case being twelve seconds of data with the 
extrapolation compared to a two-minute peak instantaneous distortion point similar to 
that given in Fig. Sb. These examples cover a wide range of Mach number, inlet geometry, 
and airflow and are typical of data acquired at AEDC with a variety of inlet designs. 
(The reader is cautioned not to infer an approximate constant slope, in that each example 
generally uses a different ordinate scale.) The line codes of Fig. 6 are the same as used 
in Fig. S. The primary conclusion gained from these examples is that the tolerance bands 
are applicable to prediction of future distortion levels. 

4.0 APPLICATIONS TO INLET DISTORTION DATA 

In the preceding sections the development of extreme-value statistics and its relation 
to time-variant inlet distortion were discussed. Some practical aspects that should be 
considered when using the techniques for routine analysis of inlet distortion data are given 
in the following sections. 

4.1    EFFECT OF NUMBER OF EXTREMES 

Application of extreme-value statistics to time-variant inlet distortion data requires 
the arbitrary selection of two time intervals: the total data time length t for which analysis 
is desired and the incremental time At from which each extreme will be chosen. The 
number of extremes N is the ratio t/At. As developed in Appendix B, the parameters 
a and ß are independent of At, whereas the modal value v is a function of At. 

As an illustration of the effect of the incremental time At, Eq. (1) has been used 
with tabulations (Ref. 11) of the Chi-square family of probability functions to compute 
the expected level of an extreme as a function of n, the number of independent samples. 
For demonstration purposes, assume the time interval At to be proportional to the effective 
number of independent observations. The results are given as Fig. 7 with the mode 
considered as a standardized variable. The asymptotic form of the Chi-square family is 
Gumbel's first asymptote, thus Fig. 7 also provides some insight as to the number of 
independent observations required to allow its use with an a priori selected parent 
population. For example, if one knew the parent population had a Chi-square distribution 
with only a few degrees of freedom, then extremes selected from small samples could 
accurately be analyzed with the first asymptote, whereas large degrees of freedom require 
much larger samples for the first asymptote to be valid. That is, the first asymptote is 
applicable if the expected extreme is a linear function of the logarithm of the number 
of independent samples. 
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Figure 6.   Representative comparisons of predicted and observed peak 
instantaneous distortion. 
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Figure 6. Continued. 
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Figure 7.  Dependence of the expected extreme on the number of independent 
samples for the Chi-square distribution family. 

These results also point out the fallacy of the commonly used 3-sigma criteria for 
estimation of random variable maxima. Even if normality can be assumed, an expected 

maximum (or minimum) of three standard deviations away from the mean is valid only 
for nominally 1000 observations. The 3-sigma criteria are too stringent for a greater 
quantity of data and much too lax for fewer observations. 

As further illustration of the effect of At variations, data from several test conditions 
similar to that used for Fig. 3 were processed, holding t constant at about 30 seconds 
and using nominal At increments of 0.1, 0.2, 0.4, etc. The dependence of the standardized 
modal value on the net number of extremes is given in Fig. 8 where each symbol 
corresponds to a specific test condition. The straight line fairings validate the expected 
logarithmic dependence of the mode on the number of extremes. 

As with most statistical analyses, decreased confidence intervals are generally obtained 
with increased data quantity. On this basis, one would expect improved accuracy of the 

parameter estimates  by  maximizing the number of extremes selected. However, the 
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asymptotic theory of extreme values is not, in general*, valid for relative peaks that are 
comparable in magnitude to the mean of the total population, so that one must be careful 
to select extremes which are truly large. It is therefore recommended that each peak be 
selected from nominally 50 independent samples subject to a lower practical limit of 20 
extremes altogether. 

The incremental time At required to obtain SO independent samples of distortion 
data depends on the inlet size (scale), turbulence level, and frequency bandwidths of the 
pressure signals and distortion calculator. Further, there appears to be some dependence 
on the nature of the turbulence with differing results being noted for simple boundary- 
layer radiated noise and the more regular shock-boundary-layer interaction turbulence 
generation, the latter requiring more data for independence. 

20 SO 100 

NUMBER OF EXTREMES, N 

200 

Figure 8.  Dependence of the modal value on the number of extremes. 

4.2    EFFECT OF FREQUENCY BANDWIDTH 

Moore (Ref. 5) has developed the similarity parameter X to correlate time-variant 
distortion data from various scale inlets, the expression being 

*Of course, if the parent population distribution matches Eq. (5), then the asymptotic theory is valid foi all 
observations. 
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X = 
2irri, 

(12) 

where r =     engine-face duct radius 

fc =     low-pass filter cutoff frequency 

a -     local speed of sound 

The need for this parameter is evidenced by the wide variation of observed peak 
instantaneous distortion as a function of frequency bandwidth, typified by the data of 
Fig. 9. These data were originally digitized at 7700 samples/sec for one second with a 
2000-Hz low-pass analog filter (X = 2.4), then digitally filtered to achieve varying X. The 
different test conditions are identified by consistent symbols for Figs. 9 through 13. 
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Figure 9.  Effect of frequency bandwidth on peak distortion magnitude. 
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Figure 10.  Computed probability density distributions with variation 
of Moore's similarity parameter. 

Various engine manufacturers have settled on low-pass frequencies for time-variant 
distortion data analysis which nominally correspond to the engine rotation frequency, based 
on correlations of engine stalls with peak distortion data filtered at that frequency. For 
sonic tip speed, this frequency corresponds to X = 1. The steady-state distortion level 
corresponds to X = 0. 

To gain insight as to the true effect of X variations on distortion data, the probability 
density distributions for several test conditions were computed with a typical result given 
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Figure 11.   Effect of frequency bandwidth on the normalized modal distortion. 
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Figure 12.   Effect of frequency bandwidth on the number of zero crossings. 
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as Fig. 10. Within the accuracy of these calculations, the probability density functions 
are reasonably independent of X, although some skewness is evident. This independence 
is primarily the result of the rms level compensating for the variation in the data; that 
is, decreased frequency bandwidth yields decreased distortion fluctuation about a decreased 
mean (see footnote, Sec. 2.2), all being correlated by the usual standardized random 
variable. However, the extremes of distortion are not correlated by the rms level, there 
being a consistent trend of decreasing normalized peak distortion with decreasing X. This 
trend is particularly evident (Fig. 11) for the modal value, the most frequently occurring 
distortion level. 

Recalling Figs. 7 and 8, one way to observe a decreased expected extreme is for 
the number of independent samples to have decreased. Reference 12 offers a method* 
for estimating the number of zero crossings of a standardized random variable and this 
number is proportional to the number of effectively independent samples. The curvature 
of the normalized autocorrelation function, R, of the distortion factor at zero lag time, 
T, is evaluated, with the number of zero crossings per second then given by 

N°= ü I *rL (13) 

This parameter has been evaluated for a few test conditions with varying T, the results 
being given as Fig. 12. Finally, Fig. 13 illustrates the modal value as a function of N0/N 
along with the compatible result obtained by varying the number of independent samples 
per extreme by varying At as was done for Fig. 8. Thus, decreased frequency bandwidth 
results in both a decreased rms level and a reduction in the relative number of independent 
samples. Application of extreme-value statistics to time-variant distortion data therefore 
either requires consistent specification or compensation for any differences. 

If X is a true similarity parameter, then the effect of X variation by means of frequency 
bandwidth variation is equivalent to variation by either the duct radius or the local sonic 
velocity. It is interesting to speculate that cold-day aircraft operation would be more 
conducive to engine stall than hot-day flights as a result of sound speed difference which 
causes higher peak distortion levels. It is known that variation of the duct radius must 
be compensated by changes in the filter frequency to achieve comparable distortion results. 

♦Although  the   method  was developed assuming normally distributed data, it is used here with the results 
demonstrating its validity. 
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Figure 13.   Dependence of the normalized modal distortion on the ratio 
of zero crossings to number of extremes. 

5.0 RECOMMENDED PROCEDURES FOR ANALYSIS OF INLET DISTORTION 

5.1    INLET DEVELOPMENT TESTING 

Inlet performance is characterized by airflow, recovery, drag, and distortion. The ideal 
performance is that combination of high recovery, low drag, and low distortion, all at 
the desired engine-match airflow with a wide operating envelope about that match point. 
Real inJets are required to give acceptable performance over such a wide range of Mach 
number and aircraft attitude with resulting design compromises that the ideal performance 
level is rarely achieved for any operating condition. To monitor the effects of inlet 
modifications, several critical or representative conditions are selected and these "tracking 
points" then artificially become the most important test conditions. 

Based on analyses of time-variant inlet distortion data from four aircraft designs and 
observations of the airframe and engine manufacturers' profitable use of wind tunnel test 
data on sub-scale and full-scale inlet models, the following procedures are recommended: 
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1. The current practice for data acquisition is to record the time-variant engine-face 
total-pressure signals for 30 seconds at each test condition for a sub-scale model inlet 
test. This time period is necessary to be reasonably sure of documenting the higher 
distortion levels, particularly so if one is seeking a representative peak instantaneous 
distortion. However, since application of extreme-value statistics to a short (1 to 2 seconds) 
data segment can yield equivalent results, it is recommended that data acquisition times 
be correspondingly reduced. Verification of the validity of the extreme-value analysis can 
be accomplished by optionally testing longer at the tracking points. It is suggested that 
a data acquisition time period equivalent to S sec of full-scale inlet operation is sufficient 
to document the statistical characteristics of inlet flowfields at stationary test conditions. 

2. The distortion factor time series can be obtained from analog and/or digital 
computers, specific examples are discussed in Section 5.3. Whatever the means, it is 
recommended that the entire time period' be processed to obtain the distortion extremes 
with analysis as discussed herein. 

3. Since the results to be obtained from the extreme-value analysis are dependent 
on the data time base, it is important that this time base be held fixed throughout a 
test series. In like manner, the similarity parameter X must be maintained constant to 
achieve comparable results. The final parameter to be selected is the number of extremes, 
N. Based on the analyses conducted during preparation of this report, it is recommended 
that N = 30 be used for normal data processing. 

4. It is recommended that the parameters of both the first and general asymptotes 
be evaluated for reasons discussed in Section S.3. The end result should be an estimation 
of the expected maximum distortion level (with tolerance band) to be encountered within 
a specific time interval of full scale inlet operation. 

5. Inlet design optimization cycles would then be targeted towards reducing this 
distortion level without compromising other performance criteria. If the indicated distortion 
reduction lies within the tolerance band, then one should not conclude that that particular 
optimization path had significant influence on maximum time-variant distortion levels. 

5.2    INLET/ENGINE COMPATIBILITY DEMONSTRATION 

As discussed in Section 2.2, distortion patterns for screen simulation of inlet flow 
should be based on the steady-state pattern rather than on one isolated instantaneous 
pattern. The extreme-value analyses can be used to determine the desired intensification 
of the steady-state distortion level, based on the return period concept. 
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The available stall margin is usually allocated to engine tolerances, age deterioration, 
transients, and distortion, with all of these assumed to be additive. It is suggested that 
some blending of the allocation for transients and distortion is proper in that the expected 
distortion maximum within the time duration of a transient is significantly less than that 

associated with steady-state operation. 

Conversely, the distortion level selected for engine qualification should be 
representative of that expected within the time period of the simulated flight condition. 
That is, the distortion level should correspond to that expected in a period of hours for 
a cruise condition but perhaps only seconds for a maneuver condition. 

Engine testing with an inlet or inlet simulator is the true proof of inlet/engine 
compatibility. For this type of testing, one is not interested in the distortion levels which 
could occur but rather what did occur. Extreme-value analysis of the time-variant distortion 
is still beneficial in the sense of data quality assurance and detection of abnormal flow 
conditions. An engine stall may occur as the result of an instantaneous peak distortion 
level which would be expected only once during the engine's lifetime; demonstrated 

stall-free engine operation for this event is a criteria too stringent for normal inlet/engine 
compatibility testing. 

5.3    DATA PROCESSING 

The mechanics of obtaining the distortion extremes depend on the resources available, 
such as analog and/or digital computers and capability for time-correlated analog-to-digital 
signal conversion of the engine-face pressures. Various techniques were used for the 
illustrations contained herein and a discussion of these procedures is given below, followed 
by u description of an  "ideal"  system. 

The analysis illustrated by Fig. 3 was based on the availability of an analog computer 
which calculated various distortion factors in real time, the output being recorded in analog 
form on magnetic tape. Subsequently, the distortion factor signal was played back through 
a peak detector with the detector threshold being reset every 0.1 sec after the output 

level was read by an analog-to-digital data acquisition system. The digital distortion 
extremes were then recorded on magnetic tape for later analysis. 

The data contained in Fig. 4, representing 28 seconds of inlet operation, were obtained 
in the manner given above, except that the peak detection and digitizing were accomplished 
in real time in conjunction with an on-line data acquisition system. The data representing 
one second of inlet operation were obtained subsequently by digitizing the engine-face 
pressure signals (time selected at random), digitally computing the distortion factor at 
each time slice, and then selecting the extreme from each of twenty equal time intervals. 
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Although no examples are contained herein, many segments of digital pressure signals 

for a short time interval containing the instant of peak distortion from a much longer 
time period have been processed. Direct application of extreme-value statistics is possible 
provided one weights the largest distortion peak according to the corresponding time ratios 
(and assumes the second largest peak is independent of the first). 

The data of Figs. 5 and 6 and analysis results were obtained in practically real time 
by monitoring the output of an analog computer with a peak detector resetting every 
0.2 seconds for a total of 12 seconds. The analog computer also contained a peak detector 

which was not reset, so that at the conclusion of the data acquisition time period of 
nominally two minutes the peak instantaneous distortion level was also available. The 
12-second set of extremes was then digitally processed to obtain the results shown with 
the analysis being a part of the on-line test data package. 

The major shortcomings of an analog distortion calculator is the unavoidable 
inaccuracy created by the approximations used to compute a distortion factor and by 
the inability to compensate for zero shifts of the dynamic transducers. Although these 
difficulties can be overcome with digital processing, the expense and time required are 
prohibitive for most test conditions. However, it is feasible to combine the features of 

the two techniques into a hybrid analog/digital system which would provide digital 
processing accuracy at nominally analog processing expense. The technique would consist 
of monitoring the analog distortion signal with a peak detector, sample and hold the 

individual pressure signals at the instant of each step in the peak detector output, digitize 
the stored pressure data at fixed time intervals, transfer this information to digital computer 
memory, and then reset the peak detector and continue. If measurements of the true 
steady-state pressure and time-averaged outputs of the dynamic transducers are available, 
then the differences are the zero shifts which can be applied to the instantaneous pressure 
data and the distortion extremes thence computed without error. 

The analyses presented as Fig. 6 include some examples of the distortion data 
indicating the second asymptote to be the best descriptor (curved up instead of down). 
This occurrence is attributed to sampling fluctuation. In such cases it is recommended 
that the first asymptote be used instead of the general results and the answers flagged 
accordingly. 

The use of maximum likelihood estimation for the parameters necessitates utilization 
of a digital computer to obtain the results. A FORTRAN listing of the program developed 

for this purpose is given in Appendix C along with samples of input/output. The various 
subroutines have not been optimized from the standpoint of computer time so that 

execution time (including plotting) averages about 3 seconds for 60 extremes on an IBM 

System 370/155, required core being about 70k dependent on the data sources(s). A card 
deck is available on request to the authors. 
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6.0 CONCLUDING REMARKS 

Application of Gumbel's extreme-value statistics analyses to time-variant inlet data 
from four aircraft designs has led to the following results and recommendations: 

1. The peak instantaneous distortion as observed within a finite data 
acquisition time period is random and not repeatable, as is the engine-face 
pressure pattern for that instant. 

2. A short time segment of distortion data can be used to statistically predict 
the expected maximum distortion level corresponding to any time period 
of inlet operation, including estimates of the prediction tolerance. 

3. Engine qualification testing should use screens based on the steady state 
rather than a peak instantaneous distortion pressure pattern with the 
distortion being intensified to the expected maximum level corresponding 
to the aircraft operation time at specific test conditions. 

4. Data acquisition time periods during inlet development wind tunnel testing 
can be reduced from the current 30 seconds to nominally 2 seconds for 
stationary test conditions, provided that analysis of the resulting time-variant 
distortion is based on extreme-value statistics. 
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APPENDIX A 
DISTORTION  FACTOR FORMULATIONS 

Complete description of the engine-face total-pressure pattern requires specification 
of all the pressure measurements, P, which make up that pattern (a difficult comprehension 
task when dealing with forty or so measurements). Various investigators have attempted 
to quantify the significant characteristics of the patterns with a manageable set of 
descriptors, termed distortion factors, which describe both the nature and intensity of 
nonuniformity. 

The distortion factors have evolved from the simple expressions: 

(maximum P - minimum P) 
Di  = 

and 

D2 = 

average P 

(average P - minimum P) 
average P 

which specify the intensity or magnitude of distortion through slightly more complicated 
expressions which distinguish between radial and circumferential variation in the total 
pressure to the current methodologies of Pratt and Whitney or General Electric, for 
example, which correlate engine stall margin with distortion level. 

The specific distortion factor equations used for the current study are given herein 
for the purpose of illustrating both the differences among them and an overall sameness 
when considered as descriptors of a stochastic process. Even though the distortion factor 
formulations vary considerably, the resultant time-variant description of inlet flow 
nonuniformity is basically random and, when normalized by the mean and standard 
deviation of the time series, notable consistency is achieved with the extreme-value 
statistics. 

PRATT AND WHITNEY DISTORTION  FACTORS (Ref. 13) 

Referring to Fig. A-l for the general engine-face probe geometry and nomenclature, 
the measured pressures are designated by Pjj with i being the ring designation and j denoting 
the rake location. The circumferential distortion factor, KTH, is computed by obtaining 
a 4-term Fourier fit to each ring of pressures 

l    J 4 

Pi(0i) = -J-   2   Pi, +   2   An; sin(n0j + 0) 1 J     j=l      '        n = 1 

41 



AEDC-TR-74-121 

and selecting the maximum weighted harmonic amplitude for each ring 

Ai = maximum (Anj/n
2) 

KTH is then given as 

I 
.2 Aj/Di 

KTH =  ,_1 
I 

q.2 i/Dj 
1=1 

where q ■ face-averaged dynamic (1/2 pv2) pressure. 

The radial distortion factor, KRA, is normally computed as a weighted average of 
deviations in average ring pressure from a base or reference radial profile. For the current 
study the reference profile was uniform with KRA being computed from 

I    i    1 

KRA 
zi4r z Pij/p-iiDr» 

q/P.S Df 

where P = face-averaged pressure 

n = radial weighting exponent = 2.86 

The face-distortion factor KA2 is computed as a weighted sum of the circumferential 
and radial components: 

KA2 = KTH + b KRA 

where b = weighting function. 

For most test conditions and most inlets, the radial and circumferential components 
are negatively correlated, with one result being that the peak or maximum instantaneous 
KA2 is less than the weighted sum of the component peaks. 

GENERAL ELECTRIC DISTORTION  FACTORS (Ref. 5) 

The circumferential parameter, IDC, and the radial parameter, IDR, are both 
dependent on ring-averaged pressures 

_   l   J 
Ri _ T S Pij 
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For each ring, the lowest pressure in the ring defines an IDC component 

IDQ = (Ri -Pijmi„)/P 

thence, hub and tip parameters are computed as the average of the two ring components 

IDChub = (IDQ + IDC2)/2 

IDCtip = (IDQ + IDQ.O/2 

and then the circumferential distortion factor is assigned the magnitude of the largest 
component 

IDC = maximum of IDChub or IDCtip 

The radial distortion components in each ring are defined as 

IDRi = (P - Ri)/P 

and the radial distortion factor is assigned the magnitude of the largest of the hub and 
tip components 

i 

IDR = maximum of IDR^ i = 1,2,1-1,1 

An overall distortion factor ID can be expressed as simply 

ID = IDC + IDR 

but the more descriptive stall margin parameter can be computed from the components 
of the circumferential and radial distortion parameters utilizing extent and shape 
parameters. Some data presented herein were computed using nominal stability usage 
factors, B, in the form 

IDL = Bc x IDC + BR  x IDR 

To illustrate the statistical similarity of all these distortion factors, one segment of 
digital time-variant engine-face data was processed with all distortion factors being 
computed. Results of application of the order statistics are given in Fig. A-2 with the 
ordinate being the normalized parameters, that is, subtracting the mean value and dividing 
by the standard deviation of the basic distortion factor time series. The basic point to 
be made is that any distortion factor computed from time-variant engine-face pressures 
can be treated as a random variable. Practically regardless of the formulation of that 
distortion factor, the underlying pressure data govern the characteristics of the result and, 
in particular, control the probability distribution of the extremes. 
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As noted in the text, the time-variant distortion factors are calculated by both analog 
and digital computers. The accuracy of the analog results from four representative inlet 
tests has been evaluated by also processing data digitally around the time of the peak 
instantaneous distortion. These data are given in Fig. A-3 and show the analog computers 
to be typically about five-percent accurate. However, later designs utilizing hybrid 
analog/digital processing have demonstrated one-percent accuracy. 

270 

Figure A-1.  General engine-face probe geometry and nomenclature. 
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APPENDIX B 
ANALYTIC DETAILS 

The objective of this Appendix is to provide the necessary supportive background 
for interpretation and application of Gumbel's asymptotic theory of extreme values. The 
generalized three-parameter distribution is formed from the third asymptote, followed by 
a discussion of its properties with respect to independent sampling and sampling from 
different time interval lengths. Details of the parameter estimation procedure are given, 
including the method of variance approximation. 

As a starting point, consider 

Y = maximum (yO i =  1, 2, ...,n 

where the yj are identically distributed independent random variables. As shown by Gumbel 
(Ref. 2), the asymptotic distribution of Y as n increases depends upon the distribution 
of the individual y, with three specific types of parent distributions yielding Gumbel's 
three asymptotes. 

Exponential type (First Asymptotic Distribution): 

F(y) = exp [-exp [-ai (y - a2)]] (B-l) 

Cauchy type (Second Asymptotic Distribution): 

F(y) = exp [- (bi/y)l>2] (B-2) 

Limited type (Third Asymptotic Distribution): 

F(y) = exp    - I±-^| " (B-3) 
I"  C2_2_"]c3 

where a,, bj, and q are parameters. All three asymptotes can be expressed by a generalized 
three-parameter distribution by substituting into Eq. (B-3): 

a = C2/C3 

ß =  I/C3 

V =   C] 

with the result being 
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["   g.frll 
L" a-/3vj 

F(y) = exp L" r>J (M) 

F(y) = 0 y <_ a/0 and 0 < 0 

F(y) =1 y > a/jJ and ß > 0 

The first asymptote results from  Eq.  (B-4)  with ß = 0, the second asymptote in 
three-parameter form with ß < 0, and the third asymptote with ß > 0. 

Two important properties of the generalized asymptote F(y; aß,v) are: (1) the 
distribution of Y may be made arbitrarily close to some distribution from the F(y; a.ß,v) 
family by choosing a sufficiently large n. The distribution chosen from F(y; aß,u) as 
being approximately equal to the distribution of Y will depend upon n, in which case 

the parameters should be subscripted, (On, j3n, va); and (2) if the distribution of the y; 
is a member of F(y; aß,v), then the distribution of Y is a member of F(y; aß,v) for 
all n. 

Let us now turn to the real problem of a stochastic process x(t) wherein we seek 

the distribution of X which is composed of the maximum of Xj(t), (i = l,2,...,n) selected 
from sub-time intervals At. It is assumed that the process is stationary and ergodic so 
that the Xj are identically distributed, but they are not independent. However, though 

adjacent values of x(t) may show strong correlation it is not unreasonable to assume that 
two values are essentially independent if they are separated by a sufficiently large time 
interval r. Following this line of reasoning, an interval of size nAt would contain nAt/r 
independent samples. If nAt » T then one could conclude the distribution of X is 
describable by the asymptotic distribution F(x; aß,v). While these comments are heuristic, 
the conclusion has been rigorously shown for certain cases and assumptions (Ref. 2). An 
even better justification for the implied assumptions of independence of the x§(t) is the 
excellent results obtained when using actual distortion data. As with the independent case 
where the parameters a, ß, and v depend upon n, in the case of a stochastic process 
these parameters are functionally dependent upon the interval size nAt. 

This interval size dependence can be shown by postulating Xj to be the maximum 
of ith of n adjoining intervals, such that the maximum X* of these Xj may also be 

considered to be the maximum of an interval n times in size. The multiplication rule 
yields 

Fx.(x: an, ßn> vn) = FXi(x; aß,v) 
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Now consider xj,   and xj2   to be maximums from intervals of lengths Tj   and T2, 
respectively. If Ti and T2 are commensurate, then we can write 

T2       m 

where m and n are integers. Let XT3 be the maximum from an interval of length mTi or 
nT2,then 

FXT3(x; aß,v) = F"Tl(x, oTl, 0T, vTl) 

- FJ?T (x; aT2, ßl2, vTl) 

or 

FxT2(x; aT2, j3T2, vTl) = FXTi(x; aTl, ßTl, vTl) 

The incommensurate cases follow if FXJ    is assumed to be a continuous function of r. 
Substituting the above into (B-4) yields 

aT2 -ßr2 
x 1//JT; 

= r 
aTl -|STl x 

aTj -ßTl vT,_ 

I//JT1 

(B-5) 

_aT2 -0T2 vT2 

This being an identity for all x implies 

aT2 = aTi 

0T2   " J3TJ 

CT2 = jj—      aTj  - (aTi  y PTI  ^i)rPTi 

Thus the parameters a and ß are independent of interval size and, for ß >0, the parameter 
v is a monotonic increasing function of the interval size for fixed frequency bandwidth. 
This effect must be considered when comparing probability plots of data where the interval 
sizes are different. Since 

log log 1/FXT2 (x; aß,vT2) 

= - log r - log log l/FXTl (x; aß,vTl) (B-6) 

Comparisons can be easily made by shifting the curve by the amount of log r when using 
- log log 1/F(x) as the plotting abscissa. 
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We now come to the problem of estimating the parameters a, ß, and v from a sample 
Xi, X2, ..., Xn. Although there are many methods which may be used to estimate these 
parameters (e.g., Ref. 1), the method used for this study was that of maximum likelihood 
(e.g., Ref. 14). The likelihood function is defined as the joint probability density function 
of the sample: 

L =   .^ f(Xi; aß,v) = .A   -£- F(Xi, aß,v) 

The maximum likelihood estimates are then the value of the parameters which maximize 
the likelihood function for the observed sample. Intuitively, this can be visualized as 
selecting the parameters so as to maximize the probability of occurrence within a small 
fixed n-dimensional volume about the sample. Maximum likelihood estimates were chosen 
for several reasons as follows: 

(1) They are efficient. That is, the product of sample size and variance of the estimate 
has the smallest limit as the sample size increases. Other estimates may have the same 
limiting variance but none will be better. 

(2) They are invariant. This is particularly useful when the parameters of interest 
are not directly estimated. For example, when a and ß are maximum likelihood estimates 
of a and ß, invariance means that e = o/p is the maximum likelihood estimate of the 
limiting distortion, c = a/ß. 

(3) Large sample theory shows that the limiting distribution of the estimates is normal 
and gives relationships for the limiting variances and covariances. This enables one to 
compute variance estimates of the estimated parameters, thence to compute approximate 
confidence intervals for the predicted distortion level as a function of time. 

For convenience, the logarithm of the likelihood function is maximized which is 
equivalent to maximizing the likelihood function since the logarithm is a monotonic 
increasing function. The required estimates are found by solving the three equations 

3 log L 
= Hi   = 0 

da 

3 log L 

a log L 

= H2  = 0 (B-7) 

= H3 = 0 
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The technique used for this solution is a modified Gauss-Newton iteration based on the 
method given in Ref. 4. Using a superscript '*' to denote initial guesses for the parameters, 
Eq. (B-7) are linearized in the form 

*      3H- 9Ht 3H? 
Hj* + —-   Aa +   -f    Aß +  —-    A» = 0 

3a 30 dv 

j =  1, 2, 3 

and then solved for Aa, Ap\ and Av. A quadratic approximation P(7) to ZHj2 is then 
minimized along the line segment defined by 

(a* + ?Aa, ß* + yAß, v* + yAv) 

with 0 < 7 < 1 and the quadratic coefficients evaluated utilizing the following three 
conditions: 

P(7) = SHj2  at 7 = 0 and 7 =  1 

d7 d7 

Let 7m   denote the value of 7 that minimizes P(7) and define 

H0  = minimum SHj2 70  = 0, 7m, or 1 

7 = To 

If Ho occurs at 70 = 0, the quadratic approximation step is repeated over the interval 
0 < 7 < 7m until H0 occurs at either 70 = 7m or 70 = 1, in which case the next 
iteration step is started with parameter guesses of 

(a* + 7o Aa, ß* + y0  Aß, v* + 70Ai>) 

The resulting iterations form a sequence of vectors (a, ß, v) such that the corresponding 
SHj2 form a monotonic decreasing sequence. The iterations are repeated until a desired 
numerical convergence criterion is satisfied. 

The asymptotic variance-covariance matrix of these maximum likelihood estimates 
can be obtained as follows (Ref. 14). Let Hjj denote second partial derivatives of log 
L with respect to the parameters, for example 

32 log L 
Hl2 "~3o3JT 
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then the expected value of these partials at the maximum likelihood point is approximated 
by the numerical averages 

A I       «1 A A A 
Hij =Fk21Hij (xk;a^) 

i = 1,2,3 

j = 1,2,3 

The variance-covariance matrix is then estimated by 

A , A 
[V,j]  =4   [Hij]! 

An approximation to confidence intervals for the estimated distortion magnitude y 
as a function of the reduced variate t can be constructed from the variance-covariance 
matrix elements utilizing a Taylor series. The inverse of Eq. (B-4) can be written 

y(t)...(.. „)„, 
where 

thence 

t = - log log 1/F (y; a, ß, v) 

2 
S \ ■ (S °-*(f *» * (& *■ 

A A A A A A 
3y      3y   A 9y    3y     A 9y    3y      A + 2 w ww"*2£ir v" + 2 w ir v»    «-« 

By using the return period concept, the estimated cumulative distribution may be 
used to estimate maximum distortion levels for future intervals. However, the above 
variance estimates are not the variance of a future observation because the future maximum 
is a random variable and will contribute an additional source of variation. Denote the 

A 
future observed maximum by Y and its estimate by Y. To obtain a confidence interval 

A A 
for Y, the variance of (Y-Y) is required. Now, Y has an asymptotic distribution given 
by Eq. (B-4) with the parameters given by Eq. (B-5) where r is the ratio of the time 
interval of the future maximum to the time interval of the individual extremes of the 
data sample used to estimate the parameters. The variance of this distribution may be 
estimated by (Ref. 2) 
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SY =(&■ *y[r (i+2^ *r2 (i+^]r2^       (B-9) 

A 
Now Y has an asymptotic normal distribution with variance estimate given by Eq. (B-8). 

A A 
Since Y and Y are independent, the variance of Y-Y is the sum of the two variances 
and may be estimated by 

Y-Y Y Y 

One-sigma limits on Y are then estimated as 

Y  -SY.Y\ Y+ Sy.? 

st.O  = sv  + s0 (B-1*» 
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APPENDIX C 
COMPUTER PROGRAM DETAILS 

This Appendix provides a brief description of the numerical implementation of the 
procedure described in Appendix B. The basic data source is presumed available in the 
form PK|; 1 = 1,2, ..., n with optional use of the average and root-mean-square distortion 
levels as normalizing parameters. Although the authors usually plot the analysis results 
using Calcomp® routines, this coding is not included in the program listing. The program 
evolved with development of the theoretical approach and could be greatly refined to 
be more efficient, particularly in the areas of making analytic simplifications of the 
likelihood function and streamlining the method of solution of the maximum likelihood 
equations. 

DESCRIPTION OF SUBROUTINES 

MAIN Calls CARD and either READB, READC, or READD to obtain basic input 
data. Calls EVSTAT. Use of external error handling routines is required 
for the occasional set of bad data or nonconvergence within NLLSQ. 

CARD Calls LISTER. Reads title and option codes from data set 5. 

LISTER Prints input card image. 

READB User-furnished routine for input data source. 

READC Input data from cards, data set 5. 

READD User-furnished routine for input data source on magnetic tape, data set 
11. 

ORDER Orders given peaks into ascending magnitude array and generates index of 
original order. 

EVSTAT Normalize data if desired, calls ORDER. Calls EXTVAL to obtain first and 
general asymptote solutions. Calls PRNT and/or EVPLOT as desired for 
output of results. 

EXTVAL        Calls  NLLSQ  for  solution  of the  maximum likelihood equations and 
VARIAN for computation of the parameter variances. 

NLLSQ General routine for solution of the nonlinear least squares fitting problem 
using a modified Gauss-Newton iteration. Calls EVAL for computation of 
partial derivatives and CHOLES for matrix inversion. 
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EVAL Computes partial derivatives of the likelihood function. Note that coding 
solves for the derivatives with respect to e, l Iß, and v and then transforms 
these results to the desired relations. Entry DATSET initializes routine. 

CHOLES General routine for matrix inversion using the method of Cholesky. 

VARIAN Computes parameter variance estimates. Calls EVAL and CHOLES. 

PRNT Prints results on data set 6. 

EVPLOT Generates plotted analysis uusing Calcomp routines. Entry PAGE1 opens 
and closes plot file. 

The following tabulations include a sample input and output using READC and the 
program listing. 
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CARD INPUT 

CARD 
COLUMN 

CARD 
COLUMN 

11U11U U2222222222333333333344444444445555555555666666666677777777778 
12345678901234567890123456789012345678901234567890123456789012345676901234567890 

SAMPLE CASE OF CARD INPUT DATA — UN-NORMALIZED 
11110   0 

♦0  _1 U ? fc.l«nn.nl l.l?na-fll     ...  . 
1INPUT VAR» 8*0.«5..120..1.18,3*0.,1.,S*0.  LEND 
10ATA PKI" .931. .78»! .757. .970. .880. .839. .851. .933» .691. .772. 

.869. .850. .832. .863. .745. .897. .996. .877. .891. .90S. 

.721. .773. .785. .769* .615. .860. .833. .759. .913. .801. 

.820. .829. .838. .766. .794. .915. .788. .911* .881. .903. 
. IENQ             
SAMPLE CASE OF CARD INPUT DATA — NORMALIZED 
110    10    0 

40    1   14    2 6.1800-01 1.1200-01 
ilNPUT  LEND 
»DATA  1ENO 

CARD 

1 
2 

o 

11111111112222222222333333333344444444445555555555666666666677777777778 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 CARD 

ON 
riT«TT[-»Tijl      I'm I STIC S      ANALYSIS 

SAMPLE  CASE OF CARD   INPUT DATA  — UN-NORHALIZED 

SEOMENT  START  TINE       0.   0.   0.   0.     0. NUMBER  OF EXTREMES     40 

10 

PAGE       1 

PART 0. POINT     0. 

SEQUENCE        0. 

Al W ORDER DATA NORMDATA N0RNVAR T RANK ORDER DATA NORMDATA NORMVAR T 

i    37 0.9310 0.9310 0.7210 -1.3120 21 1 0.7210 0,7210 0.8500 0.4019 
t              5 0.7650 0.7650 0.7450 -1.1054 22 9 0.7730 0.7730 0.8510 0.4740 
1    .3 . . _0*7_i70 0.TS7O 0TT570 -0.9612 _2J._ _. 10 . _0.7850. .. 9.JB50- 0.8574 0.5460 
t    39 0.9700 0.9700 0.7590 -0.8447 24 7 0.7690 0.7690 0.8600 0.6245 
i            28 0,8800 0.8800 0.7650 -0.7439 25 14 0,8150 0.8150 0,6630 0.7038 
k     20 0.8390 0.8390 0.7660 -0.6533 26 24 0.8600 0.6600 0.6690 0.7864 
r   22 0.8510 0.8510 0.7690 -0.5697 27 18 0.8330 0.8330 0.8770 0.8729 
1    38 0.9330 0.9330 0.7720 -0.4911 28 4 0.7590 0,7590 0.8800 0.9640 
t           31 0.8910. 5^.89 L0_. _ 0.7730- -0-4163    . __  .29 . _.35 i*Z13!>- ....0..913Q . o.eaij. 1.06.05 
)      8 0.7720 0.7720 0.7850 -0.3443 30 13 0.8010 0.8010 0.8910 1.1636 
1    26 0.6690 0.8690 0.7880 -0.2744 31 15 0.8200 0.8200 0.6910 1.2745 
!    21 0.8500 0.8500 0.7940 -0.2059 32 16 0.6290 0.8290 0.9030 1.3950 
I    17 0.6320 0.8320 0.8010 -0.1366 33 19 0.6380 0.8380 0.9050 1.5276 
i            25 0.8630 0.8630 0.8150 -0,0719 34 6 0.7660 0.7660 0.9110 1.6755 
S     2. 0.7450. _0.7J»50 0.82O0 -0.0055 .._. _  35 .. 12 0.7940. 0*7940 0.9130 . 1.6437 
.    23 0.8570 0.8570 0.8290 0.0608 36 36 0.9150 0.9150 0.9150 2.039« 
r   40 0.9960 0.9960 0.8320 0.1274 37 11 0.7880 0.7880 0.9310 2.2764 
1    27 0.8770 0.8770 0.8330 0.1946 38 34 0.9110 0.9UO 0.9330 2.5772 
1    30 0.8910 0.6910 0.8380 0.2625 39 29 0.8810 0.8810 0.9700 2.9955 

21 )    33 0.9050 0.9050 0.8390 0.3315 40 32 0.9030 0.9030 0.9960 3.7013 



EXTREME-VALUE       STATISTICS 

SAMPLE   CASE   OF   CARD   INPUT   DATA  —  UN-NORMALIZED 

SEGMENT   START   TIME       0.   0.   0.   0.     0. NUMBER  OF  EXTREMES     «0 

ANALYSIS 

ID 

PAGE  2 

PART    0.     POINT  0. 

SEQUENCE   0. 

OPTION COOES 1 AVB ■   0.6180 RMS 0.1120 

MAXIMUM LIKELIHOOD ESTIMATES« FIRST ASYMPTOTE 

MODAL PARAMETER 0.8120 • 0.0097 
SLOPE PARAMETER IT.2736 • 2.0922 
MOMENT 
LIMIT ESTIMATE 

TMIRO ASYMPTOTE CORRELATION COEFFICIENTS 

0.8192 
0.2*53 
0.22*2 
1.0938 

0.0110 
0.10*1 
0.1200 
0.*b*2 

1-2 
1-3 
2-3 

0.*26B9 
0.*1*93 
0.99796 

VARIANCE-COVARIANCE MATRICES 0*938790-0* 
•0.66*650-02 

-0,66*650-02 
0.*377J0 01 

CONVERGENCE CODEi NO, OF ITERATIONS 

0.12035D-03 
D.AB750D-03 
0.5*6*00-03 

17. 

0,*87S0O-03 
0,108360-01 
0.12*700-01 

0.5*6*00-03 
0.12*700-01 
0.14*080-01 

EVALUATION OF MAXIMUM LIKELIHOOD ESTIMATE RESULTS 

FIilST ASYMPTOTE 
T VALUE HIN MAX 

•2.00 0.6963 0.6821 0.710* 
■1.50 0.7252 0.7135 0.7369 
1.00 0.75*1 0.7«*2 0.76*1 
'0.50 0.7831 0.7739 0.7922 
0.0 0.8120 0.8023 0.8217 
0.50 0.8*10 0.8296 0.8523 
1.00 0.8699 0.8562 0.8836 
1.50 0.8989 0.882* 0.9153 
2.00 0.9278 0.9083 0.9*73 
2.50 0.9568 0.93*1 0.979* 
3.00 0,9857 0.9598 1.0116 
3.50 1.01*7 0.9855 1.0*38 
«.00 1.0*36 1.0111 1.0761 
♦ .50 1.0725 1.0366 1.1085 
5.00 1.1015 1.0622 1.1*08 
5.50 1.130* 1.0877 1.1732 
6.00 1.159* 1.1132 1.2056 
6,50 1.1883 1.1387 1.2379 
7.00 1.2173 1.16*2 1.2703 
7.50 1.2*62 1.1897 1.3027 
8.00 1,2752 1.2152 1.3351 
6.*0 1.1823 1.133* 1.2312 

RVEO PEAK 1.1800 IN 120.0 SEC 

THIRD ASYMPTOTE 
VALUE    NIN 

0.6638 
0.7094 
0.7502 
0.7866 
0.8192 
0.8*83 
0.87** 
0.8976 
0.918* 
0.9370 
0.9537 
0.9685 
0.9818 
0.9937 
1.00*3 
1.0138 
1.0223 
1.0299 
1.0366 
1.0*27 
1.0*81 
1.028* 

0.6*96 
0.6977 
0.7*02 
0.7775 
0.8095 
0.8370 
0.8607 
0.8812 
0.8989 
0.91** 
0.9278 
0.9393 
0.9*93 
0.9578 
0.9650 
0.9711 
0.9761 
0.9803 
0.9836 
0.9862 
0.9882 
0.9795 

MAX 

0.6760 
U.7211 
0.7601 
0.7958 
0.8289 
0.BS97 
0.8880 
0.91*1 
0.9379 
0.9597 
0.9795 
0.9977 
1.01*3 
1.0296 
1.0*36 
1.0565 
1.068* 
1.0795 
1.0697 
1.0992 
1.1081 
1.0773 

RETURN 
PERIOD.SEC 

2.001E-01 
2.023E-01 
2.U1E-01 
2.*76E-01 
3.164E-01 
♦.398E-01 
6.*9BE-01 
1.000E 00 
1.5B0E 00 
2.53BE 00 
*.118E 00 
6.72*E 00 
1.102E 01 
1.810E 01 
2.978E 01 
*.90*E 01 
8.079E 01 
1.331E 02 
2.19*E 02 
3.617E 02 
S.963E 02 
1.200E 02 

> 
in 

a 
H 

ESTIMATES BAiED ON DATA FROM  8.0 SEC STATISTICS ■  -0.05   3.17 



> 
m 
□ 
o 
■H 
3) 

STATISTICS        ANALYSIS EXTREME-VALUE 

SAMPLE CASE OF CARD INPUT DATA — NORMALIZED 

SEGMENT   START   TIME        0.   0.   0.   0.     0. NUMBER  OF  EXTREMES     40 

ID • PART 

PAGE   3 

14.     POINT  2. 

SEQUENCE   2. 

RANK OROER DATA NORMDATA NORMVAR T RANK . ORDER . DATA NORMDATA NOHMVAR T 

1 3T 0.9310 2.7946 0,9196 -1.3120   .  . 21 1 0.7210 0.9196 2.0714 0.4019 
2 S 0.76S0 1.3125 1.1339 -1.1054 22 9 0.7730 1.3839 2,0804 0.4740. 

3 . .0*75.70_ —1.2411 1.P411 -0.9612 23 10 -L.TB5JL. 1.4911 2033S . 0.5481). 
39 0.9700 3.1429 1.2589 -0.8447 24 7 0,7690 1.3482 2.1607 0.62*5 
28 0.8800 2.3393 1.3125 •0.7439 25 .. 14 0.81S0 .. 1.7589 . 2.1875 0.7038 

<-n 20 0.8390 1.9732 1.3214 •0.6533 26 24 0.8600 2.1607 2.2411 0.7864 
oo 22 0.8S10 2.0804 1.3482 -0.5697 . .27 _ . IB 0.8330 1.9.196 2.3125 0.8729 

36 0.9330 2.8125 1.3750 -0.4911 28 4 0.7590 1.2589 2.3393 0.9640 
 3J__ . 0.8910 2T»37s  i.aa.39 -0.4163 29 3S 0.9130 2.6339 2.9.482 -l.JAJtS. 

10 ' 8 0.7720 1.3750 1.4911 -0.3443 30 13 0.8010 1.6339 2.4375 1.1636 
11 26 0.8690 2.2411 1.5179 -0.2744 31 .. 15 0.8200 1.6036 2.4375 1.2745 
12 21 0.8500 2.0714 1.5714 -0.2059 32 16 0.8290 1.8839 2.5446 1.3950 
13 17 0.8320 1.9107 1.6339 -0.1386 33 . 1.9 . .0.8380.. .1.9643 2.5625 1.5276 
1* 23 0.8630 2.1875 1.7589 -0.0719 34 6 0.7660 1.3214 2.6161 1.6755 

16 
_2 . 
23 

0.T4S0 . l.BJLU- —Q jQflSS  35_ .0.7940   1.S714 _2.6339_.. 1.8437 
0.8570 2.1339- 1.8839 0.0608 36 36 0.9150 2.6518 2.6518 2.0398 

17 40 0.9960 3.3750 1.9107. 0.1274. .. .37. 11 0.7860. . 1.&179 .2.7946 2.2764 
ia 27 0.8770 2.3125 1.9196 0.1946 38 34 0.9110 2.6161 2.8125 2.5772 
19 30 0.8910 2.4375 . 1.9643. .0.2625 39 .29 . 0.8810. 2.3482 . 3.1429 2.9955 
20 33 0.90S0 2.5625 1.9732 0.3315 40 32 0.9030 2.5446 3.3750 3.7013 



STATISTICS       ANALYSIS EXTREME  -VALUE 

SAMPLE CASE OF CARD INPUT  DATA — NORMALIZED 

0«   0.   0.   0.     0. NUMBER OF  EXTREMES     40 SEGMENT  START   TIME 

OPTION COOES 1 1 1 

ID 

AV8 ■   0.6180 

PAGE * 

PART  1*.    POINT 2. 

SEQUENCE 2. 

RMS ■  0,1120 

MAXIMUM LIKELIHOOD ESTJMaTESI FIRST ASYMPTOTE 

MODAL   PARAMETER 1.7325  • 0.0865 
SLOPE   PARAMETER 1.93*6  • 0.23*3 
MOMENT 
LIMIT   ESTIMATE 

VARIANCE-COVARIANCE MATRICES 0.746400-02 
-0.6646SD-02 

C0NVER6ENCE  CODE»  NO». OF  ITERAUON4 

THIRD ASYMPTOTE 

1.7964 
0.9526 
0.2242 
4.2482 

-0,664650-02 
0.549090-01 

0.0980 
0.2718 
0.1200 
1.2119 

CORRELATION .COEFFICIENTS 

0.9S944D-02 
0.119**0-01 
0.48785D-02 

1-2 
1-3 
2-3 

0,44870 
0.41493 
0.97591 

0,119440-01 
0.738500-01 
0.3183*0-01 

0.48785D-02 
0.31834D-01 
0.14408D-01 

EVALUATION OF MAXIMUM LIKELIHOOD ESTIMATE RESULTS 

FIRST   ASYMPTOTE THIRO ASYMPTOTE RETURN 
T VALUE . _.KJll_.. .    . MAX.  -       .- VALUE   _ .  HIN . . DAX. .. PERLOJÜSE.C 

•2.00 0.696T 0.5720 0.6254 0.4089 0.2821 0.5356 2.001E-01 
1.50 0.9571 0.8524 1.0619 0.8161 0.7U3 0.9208 2.023E-01 
1.00 1.2156 1.1270 1.3042 1.1801 1.0915 1.2687 2.141E-01 
0.50 1.4740 1.3922 1.5558 1.50S5 1.4237 1.5872 2.476E-01 
0.0   . 1.7325..  U646JL-  UA190...-. _    _1..7.964   .. -1.7098.. ...1.6829 _3*iA4E-0J. 
0.5O 1.9909 1.8897 2.0921 2.0564 1.9552 2.1576 4.398E-01 
1.00 2.2494 2.1271 2.3716 2.2689 2.1666 2.4112 6.498E-01 
1.50 2.5078 2.3607 2.6549 2.4967 2.3496 2.6437 1.000E  00 
2.00 2.7662 2.5923 2.9402 2.6824 2.5085 2.856* 1.560E  00 
2.50 3.0247 2.8226 3.2268 2.8485 2.6464 3.0506 2.538E  00 
3.00 3.2831 . ..   4*0520-.  3.5143  _   ...2.9970 2.7658 . .3*2281 .   .4.108£_00 
3.50 3.5416 3.2B10 3.8022 3.1297 2.8690 3.3903 6.724E  00 
4.00 3.8000 3.5095 .4,0906 3.2463 2.9578 3.5388 1.102E  01 
4.SO 4.0585 3.7376 4.3792 3.3543 3.0337 3.6750 1.810E   01 
5.00 4.3169 3.9659 4.6680 .    3.4491 3.0981 3.8002 . 2.978E  01 
S.50 4.5754 4.1938 4.9569 3.5339 3.1523 3.9155 4.904E  01 
6.00 4.8338. 

5.0923 
 4.»g>*  3TftOOT -1*19.75. .  i*D2ia   B.Q79E  01 

6.50 4.6494 5,5352 3.6774 3.2345 4.1203 1.331E  02 
T.00 5.3507 4.8770 5.8244 3.7379. 3.2642 4.2116. 2.194E. 02. 
T.50 5.6092 S.1046 6.1137 3.7920 3.2675 4.2966 3.617E  02 
8.00 5.8676 5.3321 .     .6.4031 3.8404 3.3049 4.3759 ..5.963E-02 
6.40 5.0387 4.6022 S.4753 3.6640 3.2274 4.1005 1.200E  02 

:RVEO PEAK 5.0179 IN  120.0 SEC ESTIMATES BASED ON DATA FROM     8. .0  SEC                    STATISTICS 

o 
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C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

EXTREME-VALUE STATISTICS ANALYSIS 

IOPT(l) POINTS TO DATA SOURCE 
« 1 CARD INPUT 
■ 2 DISK FILE 
■ 3 TAPE 

IOPTI2) SPECIFIES PRINT It PLOT 2, BOTH 0 
IOPT<3)=0 FOR NORMALIZATION BY AVGtRMS 
IOPTU)» NUMBER OF   SOLUTIONS PER INPUT SET 
IOPT(5) » SPECIFIED NPK IF NOT » 0 
I0PT(6> » PLOT SCALE SPECIFICATION 

* 0 DEFAULT SCALES 
» 1 COMPUTE SCALES 

»1 FOR NU ADJUSTMENT 

PEAK 
VMIN 
YMAX 
YINC 

PLOT 
PLOT 
PLOT 

« SIGMA LEVEL 

VARU)=ID VARU1) 
2 sPART 12 
3 »POINT 13 
4 »START TIME,DAY 14 
b »HOUR 15 
6 »MIN 16  » 
7 »SEC 17  = 
8 »MSEC 18 9 
9 »SAMPLE RATE PER SEC        19  » 

10 »PEAK TIME  (SEC) 20 ■ SEQUENCE 
DIMENSION PKI300) 
COMMON /TITLE/ TIT(20)tVAR(20) 
COMMON /OPTION/ IOPTI10) 
CALL ERRSET<207,256,-1,11 
CALL ERRSET(208»256i-l»l) 
CALL ERRSET(209t256t-lil! 
CALL ERRSET<252,256,-1.1J 
CALL ERRSET(2bit2S6t-lil] 
CALL ERRSET(261t2bbt-l*l! 
CALL ERRSETC263,256,-1,1I 

10 CALL CARO 
20 CONTINUE 

IFIIOPT(l).EQ.l) CALL READC(N,AVGtRMS,PK) 
IF(IOPT(l).EQ.2) CALL REA0B(N,AVG»RMS»PK) 
IFIIOPT(l).EQ.J) CALL REAOD(NiAVGtRMSiPK) 
CALL EVSTAT(N»AVG«RMS,PK> 
I0PT(4)=IUPT(4)-1 
IF(IOPT(4).GT.O) GO TO 20 
IF<I0PT<1).EQ.3) REWIND 11 
GO TO 10 
END 

SCALE 
SCALE 
SCALE 

60 
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SUBROUTINE CARD 
COMMON /TITLE/ TIT<20)tVAR(20) 
COMMON /OPTION/ IOPTUO) 
DATA ID/O/tN/5/ 
DATA IPLOT/0/ 
IF(ID.EQ.O) CALL LISTER(6> 
ID*ID*1 
REAO(NtltEND«100)  TlTtlOPT 

1 FORMAT(20A4 /I0IS) 
VAR(20)«ID 
IF%I0PT*2<.NE.l *ANO. IPLüT,EQ.0< IPLOT«! 
RETURN 

CLOSE EVPLOT FROM CARD END 
100 IF«IPLOT.EQ.0< STOP 

CALL PAGEHS) 
END 

SUBROUTINE LISTER(K) 
REAL«* C<20) 
DATA KARD/1/ 
REWIND 5 

10 WRITE(Ktll) 
11 F0RMAT(lHl*«(/)ilXt*3(lH*)»12H CARD INPUT t*3(lH»>> 

MRITE(K*12) 
12 FORMAT </#5H CARD»T20» 10(lHl) 110UH2) 110(lH3) » 10(1M4> « 10 (1H5) 110 (1H 

•6)I10(1H7>tlH8i/t7H COLUMNtTl1t8(10H1234567890)?SXt4HCARDt/) 
DO 30 J»li45 

20 READ(5t21«END«40> C 
21 FORMAT<20A4> 

WRITE(Kt22) CtKARD 
ZZ  FORMAT(10Xt20A4tlB) 

KARD>KARD«1 
30 CONTINUE 

WRITE<Ktl2) 
GO TO 10 

40 REWIND 5 
WRITE(Kil2) 
RETURN 
END 
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SUBROUTINE  READC(N.AVG*RMS.PK) 
DIMENSION  PK(JOO) 
DIMENSION PKI(300) 
COMMON /TITLE/ TIT(20)•VAR(20) 
COMMON /OPTION/ IOPTUO) 
NAMELIST /INPUT/ VAR  /DATA/ PKI 
READ(b.l)  NilÜ.NPRTtNPT.AVGtRMS 

I FORMATUI5*2E10.*) 
VAR(15)«1. 
VAR(1)«1D 
VAR(2)«NPHT 
VAR(3)>NPT 
READ(5tINPUT) 
RfcAD(5tDATA) 
00 10 1*1,N 
PK(I)BPKKI) 

10 CONTINUE 
IF(I OPT(3).EQ.0)  VAR(11> »(VAR111>-AV6)/RMS 
RETURN 
END 

SUBROUTINE ORDER!T) 
REAL** X 
DIMENSION T(300) 
COMMON /EVALX/ X(300)»NPK 
COMMON /ORD/ KI300) 
NBNPK 
TMIN»l,ü50 
DO    10    I»1,N 

10 K(I)»0 
DO 30 I = UN 
DO 20 J=1,N 
IF(K(J>)      20*11*20 

11 IF<T(J)-TMIN>      12*12*20 
12 KK=J 

TMIN=T(J) 
20  CONTINUE 

K(KK)>I 
TMIN*1.D50 

30 CONTINUE 
DO 40 1=1,N 
X(K(I))=DBLE(T(I)) 

40 CONTINUE 
RETURN 
END 
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SUBROUTINE 
c 
c N 
c AVG 
c RMS 
c PK 
c 

EVSTAT (N t AVGi RMSt PK ) 

■ NO. OF PEAKS 
>x TIME AVERAGED DISTORTION 
« ROOT-MEAN-SQUARE OF DISTORTION 
« UNORDERED ARRAY OF DISTORTION PEAKS 

REAL»8 X«Sl»S3,VliV3 
DIMENSION  PK(N>tT(300>iSl(10)tS3(10>(Vl(3«6>tV3Ot6) 
COMMON /EVALX/ X(300),NPK 
COMMON /TITLE/ TIT 120),VAH<20) 
COMMON /OPTION/ lOPT(lO) 
NPKsN 
IF(I0PT(3))  20tl0,20 

10 DO 15 1=1,N 
15 T(I)«(PK(I)-AVG)/HMS 

GO TO 30 
20 DO 25 I»1.N 
25 T(I)>PK<I) 
30 CONTINUE 

CALL ORDER(T> 
Sl(l)=X(NPK/3) 
S1(2)*<-ALOG(ALOG((1. «NPK)/NPK))♦ALOG < ALOG(1.*NPK)))/(X1NPK)-X(1)) 
CALL EXTVAL(2tSl»Vl) 
S3U)«S1(1) 
S3(*)*2.*X<NPK) 
S3(3)»1.00/(SI(2)«(S3(*)-S3(in) 
S3<2)"S3<3)»SJU) 
CALL EXTVAL(3tS3*V3) 
VAR(16)sV3(lib)/DSQRT(V3(li4)*V3(2*5>) 
VAR(17)3V3(lt6)/DSQRT(V3tli4)*V3(3i6t) 
VAR(lB)BV3(2f6)/OSORT(V3<2t5>*V3(3t6)) 
IF(IOPT<2).EQ*2)  GO TO «0 
CALL PRNT(Sl*S3fVltV3tAVGiRMStPKiT) 

40 IF(I0PT(2).EQ.1>  GO TO bO 
IF*I0PT*6<.EQ.1< CALL SCALE 
CALL EVPLOT(Sl»S3tAVGtRMSfVl,V3) 

50 CONTINUE 
RETURN 
END 

SUBROUTINE EXTVAL(KODE,S»V> 
REAL#8 StViV«X 
DIMENSION  SUO) tV(3i6>iY(300) 
COMMON /EVALX/ X(300),NPK 
DO 10 I«1.NPK 

10 Y(I)»0. 
CALL NLLSO(KODEtStY) 
CALL VARlAN(KOOEfStV) 
RETURN 
END 
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SUBROUTINE NLLSQ(KODEfGUESS»Y> 
IMPLICIT REAL'S (A-MtO-Z) 
DIMENSION X<30Q>iY<300>.GUESS(10>»THETAU0I.Q<10l»OU0>»FMAT(10,10 

•) 
DATA IT/20O/tTOL/lD-8/tATOL/lO-10/»ISWZ/0/iISN3/0/ 
DATA KSYM/0/ 

C ROUTINE NORMALLY FITS Y«F(X)» X USEO NOW AS POIN1ER ONLY» Y"0 
C NP NORMALLY NO, OF PARAMETERS   NS NO. OF SAMPLES 

GUESS(101*0. 
C    GUESS 110) ■ CONVERGENCE CODE 
C * 0 OK   *1 MAXIMUM IT   »2 POSITIVE DERIVATIVE 
C "3  TOO MANY CUTBACKS 

NOBS'KODE 
NP-KOOE 
ICHK-0 
ITGMO 
DO 1 IM.KODE 

1 «{[)•! 
NQ>0 
II-O 
NS*KODE 
CALL DATSET«GUESS,KODE) 
OZERO«0.0 
DO S I'ltlO 

5 THETAtl)-QUESS(I) 
10 CONTINUE 

100 CONTINUE 
ITN-1 
DO   HO   I"ltNS 
XX>X<I) 
F-EVAL(XX«GUESStNPtO) 

110 QZERO»QZEROtftY*I<-F<**2 
120 QHALFaO.O 

KOUNT'O 
QONE'0.0 
OVHINsO.O 
DO 130 J»1»NP 
D(J)«0.0 
0(JI » 0.0 
DO 130 K»1.NP 

130 FMAT<J»K)«0.0 
DO 150 I«l,NP 
DO 150 J»I»NP 
00 1*0 K»1»NS 
XX«X(K) 

140 FMAT<I*J>«FMAT(I»J)*EVAL<XX,GUESStNP»I>«EVAL(XX»OuESS»NP*J) 
l&Q FMAT(J«I> • FMAT(I»J> 

00 170 J«liNP 
DO 160 I'ltNS 
XX«X(I) 
F>EVAL(XXtGUESS»NP»0) 
Q<J)«0(J)«<Y(I)-F)»EVAL<XX»GUESS»NP»J) 

160 CONTINUE 
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170 CONTINUE 
DO 210 J-l.NP 

210 FMAT(JfNP*l)»Q(J> 
102a« 
102-5 
CALL CHOLES(FMATtNPtltlOtID2»2> 
00 200 J«1.NP 

200 D(J)«FMAT<JtNP*l> 
DERIV ■ 0.0 
00 221 J-ltNP 

221 DERIV « DERIV-0(J)«Q(J> 
IF (OERIV ,GE. 0.0) 00 TO 222 
DO 230 I»ltNP 

230 THETA<I)>GUESS(I)*D(I) 
DO 240 I>1«NS 
XX»X(I) 
F=EVAL(XX«THETA»NP.O> 

240 QONE«QONE * <Y(I)-F)««2 
227 CONTINUE 

QVMIN>0,0 
DENOMaQONE-QZERO-DERIV 
IF (DENOM .LE« 0.0) 60 TO 223 
VHIN ■ -0.5*DERIV/OENOH 
IFUMIN.GE.1.0)  GO TO 223 
IF (VMIN.LT.0.1) VMIN«0.1 
DO 270 I«1.NP 

270 TMETA(I) ■ GUESS«1)*VMIN»0(I) 
DO 280 1*1.NS 
XX"X(I) 
F«EVAL(XX.THETA.NP.O) 
QVMIN«QVMIN*(Y(I)*F)*«2 

280 CONTINUE 
IF (QVMIN .GT. QZERO»ATOL) GO TO 225 

224 CONTINUE 
DO 290 I-ltNP 

290 GUESS(I)«GUESS(I)«VMIN*D(I) 
IF (OVHIN.LT.ATOL) GO TO 330 
IF (DABS(<QVHIN-QZERO)/QVMIN).LE.TOL) GO TO Uli 

300 IF (ITN-IT) 320.310.310 
310 CONTINUE , 

GUESS(10)»100 
L-L*l 
GO TO 330 

320 QZEROBQVMIN 
ITN=ITN*1 
GO TO 120 

1111 CONTINUE 
330 IF (ISW3-1) 370.340.370 
340 JF (II) 370.350.370 
350 NS=NOBS 

II-l 
ITN«1 
GO TO 120 

370 CONTINUE 
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IF(KOUNT.GT.S) GUESS(10)»300 
6UESS<9)«ITN 
IF(K0DE.EQ,2) RETURN 
IF(K0DE.EQ,3) RETURN 
60 TO 1 

600 CONTINUE 
222 CONTINUE 

GUESS(10)»200 
RETURN 

223 VMIN "1.0 
QVMIN » GONE 
00 TO 224 

225 IF (QONE *LT. QZERO) 60 TO 223 
KOUNT"KOUNT*1 

DO 226 J«1«NP 
226 DM) ■ VMIN«D(J) 

QONE * QVMIN 
- DERIV«DERIV*VMIN 

60 TO 227 
END 

FUNCTION EVAL(XtCtNtK) 
IMPLICIT REAL*6 (A-HtO-Z) 
DIMENSION C*10< 
COMMON /EVALX/ Y(300)tNPK 
IF(K0DE.EQ.3) 60 TO 100 
IF(V4>NE»C<1>)60 TO 10 
IF(A.NE.C(2))60 TO 10 
60 TO 20 

10 CONTINUE 
V=C(1> 
A«C(2> 
SO«NPK 
S1»0. 
S2»0. 
S3>0. 
S*»0. 
S5»0. 
DO 15 I«1«NPK 
E«Y(I)-V 
PHIaDEXP(-A*E) 
S1«S1»1.DO-PHI 
S2*S2»E*U,DO-PHI) 
S3°S3»PHI 
S*«S**PHI*E 
S5«S5*PHI»E*#2 

15 CONTINUE 
T1»A»S1 
T2»S0/A -S2 
Tlla-S3«A**2 
T12-S1*A«S4 
T22»-S0/A«»2-S5 

20 KK>X 
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60 TO (30i40)*K 
GO TO (21i22).KK 

21 EWAL-T1 
RETURN 

22 EVAL>T2 
RETURN 

30 GO TO (31t32)tKK 
31 EVAL-T11 

RETURN 
32 EVAL-T12 

RETURN 
♦0 GO TO (32.42)«KK 
«2 EVAL-T22 

RETURN 
100 CONTINUE 

IF(V.NE.C(1>> GO TO 1 JO 
IF(A.NE.C<2)> GO TO 110 
IF(B.NE.C(3>) GO TO 110 
GO TO 120 

110 CONTINUE 
V«C(1) 
E»C(8) 
A»C<2> 
B=C(3) 
XK-l/B 
E«A«XK 
S0>NPK 
S1«0. 
S2-0. 
S3«0. 
S4»0. 
S5"0. 
S6»0. 
S7-0. 
S8-0. 
S9-0. 
S10-0. 
DO 115  I»l,NPK 
PHI»(E-vm)/(E-V) 
PMlK"PHI»»XK 
PHIL'DLOG(PHI) 
S1«S1*PHIK 
S2«S2*1D0/PHI 
S3»S3*PHIK»PHI 
S4>S4»PHlL 
S5«S5»PHlK»PHlL 
S6«S6»PHIK/PHI 
S7>S7*lO0/PHI**2 
S8»S8*PHIK/PHI»«2 
S9»S9*PHIL»PHIK/PH1 
S10sS10«PHlK*PriIL«*2 

115 CONTINUE 
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EV-E-V 
Tl»(SO-Sl)«XK/£V 
T2«{-XK-SO*(XK-1)•S2«XK*S1-XK«S6I/EV 
T3«S0/XK*S4-S5 
Til»(SO-UK*1)»SI)»XK/EV*«2 
T12« <-SO-XK«S6* (XK* 1) »SI) «XK/EV»^ 
T13»(S0-S1-XK«S5)/EV 
T22» < SO-(XK-1J/XK»S7*XK*2»S6-<XK»I)»SI-(XK-1>«SB)«XK/EV»»2 
T23>(-SO*S2-XK*S9«XK*SS-S6*Sl)/EV 
T33»(-S0»XK»"2-XK«»4»S10) 
T33»T33*XK*»3«2*T3 
T33»T33  ♦  E»»2*XK»»2*T22  ♦  2.*E»XK«»2»T2   ♦  2.*E»XK*»3*T23 
T23»  -  XK«»3»T23  -  E*XK»*2»T22  -  XK»»2*T2 
T22»  XK»»2«T22 
T3«-T3»XK»«2 
T3»T3  -  E»XK*T2 
T2»XK»T2 
T13 ■  -  XK*»2*T13 - E»XK»T12 
T12   ■  XK«T12 

120 KK»X 
60  TO(130tU0tl50)»K 
60  T0(121tl22fl23»tKK 

121 EVAL»T1 
RETURN 

122 EVAL-T2 
RETURN 

123 EVAL»T3 
RETURN 

130 60 T0<131fl32fl33)tKK 
131 EVAL-T11 

RETURN 
132 EVAL»T12 

RETURN 
133 EVAL»T13 

RETURN 
1*0 60 T0(132tl*2tl43)iKK 
142 EVAL»T22 

RETURN 
143 EVAL«T23 

RETURN 
lbO 60 TO (133»143fl53)tKK 
153 EVAL»T33 

RETURN 
ENTRY DATSETtCtKODE) 
DATSET-O 
RETURN 
END 
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SUBROUTINE  CHOLESU»N,NV»IDltI02.HATSYM) 
REAL«8 A(101*I02)tSUMtTEMP 
CUT»0. 
M«N*NV 
NARO"N*l 
IF<A(ltl).NE.0.0) GO TO 47 
DO 37 U'ZtN 
IFUIJfll.EQ.O.O) 60 TO 37 
IFLIP«J 
60 TO 27 

37 CONTINUE 
60 TO 54321 

27 00 57 K=1*M 
TEHPaA(IFLIPtK) 
A(IFLlPtK)«A(lfK) 
A(1»K)*TEMP 

57 CONTINUE 
47 00 2 J«Z»M 

A(l»J)«A(ltJ)/A(l»l) 
2 CONTINUE 

DO 6 I"2tN 
DO 7 J«2»M 
IFCMATSYM.EQ.0>60 TO 49 
IF<I-J>69*68*67 

49 IF<J.6T.I)60 TO 69 
68 K«J-1 

SUMaO.O 
DO 3 IR*i*K 
SUM»SUH*A(ItIR>*A(IRiJ) 

3 CONTINUE 
D>A(I*J> 
A<I*J)«A(I.J)-SUM 
IF (MATSYM.NE.2) 60 TO 7 
D»A(I»J)/0 

101 FORMAT(»0SIN6ULAR MATRIX* I • ••12) 
IF (D.GTtCUT) 60 TO 7 
DO 88 KRK=1.N 

88 A(KRKtJ) »0.0 
DO 89 KRK»1*M 

89 A(d»KRK) «0.0 
A(J*J)"-ABS(D) 
60 TO 7 

69 K»I-l 
SUMaO.O 
DO 4 IR*1*K 
SUM«SUM»A(ItIR)*A(IRtJ) 

4 CONTINUE 
IF(A(I*I).EQ.O*0) 60 TO 54321 
ACI*J>*(A(I*J)-SUM)/A(I»n 
60 TO 7 

67 A<I*J)»A(J.I)*A(J.J) 
7 CONTINUE 
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6 CONTINUE 
DO 52 NPROB-NARDtM 
DO 52 K»2iN 
I«N*1-K 
SUH>OtO 
LL«I*1 
DO 51 IR«LL»N 
SUM*SUH«A(It1R)»A(IRtNPROb) 

51 CONTINUE 
A(IiNPROBI»A(IiNPROBI-SUM 

52 CONTINUE 
60 TO 12345 

54321 Nc-1 
12345 RETURN 

ENO 

SUBROUTINE VARIANCKODEtS#V) 
IMPLICIT REAL*d (A-HiO-ZI 
DIMENSION  S(10>tV(3»6)iA(3f6)iAS(3t6) 
TOL-l.DO 
NBKÖDE 
M*2»N 
DO 40 InlfN 
K*I»N 
X«I 
DO 30 J»1.N 
A(ItJ)"-EVAL(X»StNtJ) 

30 A(JtK)«0. 
40 A(ItK>«l.D0 

DO 50 I«liN 
DO 50 J«ltM 

SO ASdtJ)-A(ItJ) 
CALL CH0LES(AiN.N»3f5,2> 
00 60 I«lfN 
00 60 J«ltM 

60 V(ItJ)«A(IiJ) 
DO 70 I«ltN 
J«I*4 
K«I*N 

70 S(J)«TOL»0SQRT(V(IiK)J 
IF(KODE.EO.2) RETURN 

SOLVE FOR LIMIT VARIANCE FOR K0DE>3 
EP"S(3)/S«2)                      ' 
AS<2.2>»S<3>»*2»<AS<2»2>-2.«*EP«AS(2«3>*EP<"»2<»AS<3.3>) 
AS<2.3)»S(3)«(AS(2.3>-EP«AS(3»3)) 
AS(li2»«S(3)««AS(li2)»EP*AS(lt3)> 
AS(2tl)BAS(li2) 
AS(3t2)>AS(2i3) 
DO 90 I"ltN 
K«I«N 
DO 80 J>lfN 

BO AS<JtK)>0. 
90 AS(I»K)"l.D0 

CALL CH0LES(ASiNtN»3t5t2) 
S(4)-S(2)/S(3) 
S(8)»T0L»DSQRT(AS(2,5) > 
RETURN 
ENO 
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SUBROUTINE PRNT(S1iS3.VliV3.AVG»RMS»PK»T) 
REAL'S  S1.S3.V1.V3.X 
DIMENSION     SKIO) .S3U0).   VK3.6).   V3(3i6) »  PK(300)t   T(300> 
COMMON /EVALX/ X(300>tNPK 
COMMON /TITLE/ TIT(20)»VAR(20) 
COMMON /OPTION/ IOPT(IO) 
COMMON /ORO / KORD(300) 
COMMON /MISC/ HP(300)tTP(300) 
DATA NPAG/0/»NLlN/0/fN/6/ 
NPK2-NPK/2 
NLIN-O 

1 FORMAT(1H1»20X.«E   XTREME-VALUE       STATISTICS 
•A  N  A  L  Y  S   I   S»tTl22t»PAGE   »tI3»/lH0«20A4*lOXt»10  ■•tF6.0?5Xt 
•»PART•»F6,0»5X.«POINT»«F4.0»/) 

2 FORMATdH .«SEGMENT START TIME «•F4.0.3F3.0tF4.0tT118,«SEQUENCE *t 
•F4.0.T49. »NUMBER OF EXTREMES'»Ut/» 
00 10  I-ItNPK 
TP(I)»-AL0G(AL0G((1.*NPK)/FL0AT(I))) 

10 CONTINUE 
LPP-50 

15 DO 30 I-1.NPK2 
IF(NLIN/LPP*LPP.NEtNLlN)  GO TO 20 
NPAG>NPAG+1 
WRITE(N.l) NPAGtTITt(VAR(K)»K«lt3) 
WRITEIN.2)  (VAR(K>»K*4.8).VAR(20>tNPK 
WRITE(N.16> 

16 FORMAT OHOt«RANK  ORDER  DATA   NORMOATA  NORMVAR     T». 
•       T61.«RANK  ORDER  DATA   NORMDATA  NORMVAR      T**/) 

17 FORMATdH   »I3tI7t*F9.4tT61 »13.I7.4F9.4) 
20  CONTINUE 

NLIN»   NLIN»1 
J"I*NPK/2 
HRITE(N.17)      I.KORD(I).PK(I)»T(I).X(I).TP(I)»J.KORO(J).PK(J).T(J>. 

•X(J).TP(J) 
30 CONTINUE 

NPAG>NPAG«1 
•JRITE(N.l) NPAG.TIT.(VAR(I).I»1.3) 
WRITE(Ni2)  (VAR(I),I«4t8)»VAR(20).NPK 
WRITE(N«31) lOPTtAVGtRHS 

31 FORMAT(*0 OPTION CODES ♦.10IS.26Xf»AVG »».F9.4.SX.»RMS »»fF9.4.//) 
MRITE(Nt32) 

32 FORMAT(»OMAXIMÜM LIKELIHOOD ESTIMATES! FIRST ASYMPTOTE«»T62» 
•»THIRD ASYMPTOTE»«T90*»CORRELATION COEFFICIENTS»*/) 
WRITE(N.33)  SI(1)»Si(5)«S3(1).S3(5).VAR(16) 

33 FORHATdH »SX« «MODAL PARAMETER«»T30.F7.4.» • »»F7.4.T60.F7.4.• • • 
•»F7.4.T95.•1-2».5X.F8.5) 
WRITE(N.3*>   SI(2)■SI(6)»S3(2)tS3(6)»VAR(17) 

34 FORMATdH   .5X. «SLOPE  PARAMETER» »T30.F7.4t«   •   «.F7.4.T60.F7.4»»   *   • 
•»F7.4.T95»«1-3«.5X.F8.5> 

WMITE(Nt35)        S3(3).S3(7)«VAR(18> 
35 FORMATdH   .5X.«MOMENT«»T60.F7.4. •   •   •»F7.4.T95»»2-3»»5X.F8.5) 

WRITE(Nf36)        S3(4)tS3(8) 
36 FORMATdH   .5X.«LIMIT   ESTIMATE» .T59»F8.4. »   •   **F7.4t/) 
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WRITE(Nt37)       (<Vl(ItJ)tJ«3t*).(V3CI»K)tK«4t6)tI«lt2) 
37 FORMATClHOt'VARIANCE-COVARIANCE MATRICES'i2016.5tlQX»3D16.5i/lH t 
•T30.2D16.5tlQXt3D16.5) 
WRITE(N.38)    (V3(3»J)»J*«t6) 

38 FORMATC1H t70X»3016.S) 
WRITE CN»39) Sl(lO)iSU9)»S3(10>»S3(9) 

39 FORMAT(lHOt'CONVERGENCE CODEt NO. OF ITERATIONS'i5Xt*F10.0> 
WRITE»N»41< 
T0L*VAR*15< 

41 FORMAT(//• EVALUATION OF MAXIMUM LIKELIHOOD ESTIMATE RESULTS'/IHOI 
•T20t»FIRST ASYMPTOTE'tT53t'THIRD ASYMPTOTE«tT81t'RETURN'»/1H »• 
• T 't8Xt2(»VALUE    MIN      MAX'tlQXI»T79t«PERIOOtSECt/> 
XNPK#VAR*9<»VAR»10< 
DO 50 I*lt22 
XT#FL0ATftI-5</2 
IF*I.EQ.22<XT#-AL06*AU0G*XNPK/(XNPK-1,)>) 
XE«EXP«-XT«SNGL%S3»3<« 
XB««1.*XE</S3%3< 
XC#%SJ%4<-S3*1««>XT»XE-S3*2<«>XB/S3*3< 
XA«XT/S1C2«>*2 
Xl«DSQRT*Sl*5<*»2fc*XA*Si*6<«»*2-2.»XA»Vl»lt4« 
X3«DS0RT((S3{b)«XE)»«2 ♦ (S3(8) *>XB)**2 * (S3fT)»XC)#*2 

• &2.*«XE«XB*V3ftl(5<&XB*XC*>V3«2t6<&XE*XC*V3»lt6< « 
xsi.xi 
XS3-X3 
XF*S1*1<IXT/S1*2< 
X6#XF-XS1*T0L 
XH#XFiXSl*TOL 
XI#XB«S3*2<VXE»S3*l< 
XJ#XI-XS1*T0L 
XK#XIfcXSl*TOL 
XL#1 ./*1. -EXP*-EXP*-XT«</V AR*9< 
WRITE«N*42< XT.XFtXGiXH.XItXJtXKiXL 

42 FORMATdH  *F8.2t2X*3F10.4«3Xt3F10.4t4XtlPE10.3< 
50 CONTINUE 

XM#«VARftl1<-XF</XS1 
XN««VARftl loXK/XSS 
X0#NPK/VARft9< 
WRITE*Nt5l<VAR»ll<«VAR*10<.XO.XM»XN 

51 FORMAT!lHOt'OBSERVED PEAK'*F7.4t2X»•IN'«F6.1»'   SEC•lOXt'ESTIMATES 
• BASED ON DATA  FR0M'tF5.1t*   SEC«9X«'STATISTICS ■«t2F7.2) 

RETURN 
END 
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NOMENCLATURE 

a Local speed of sound 

D General distortion factor 

F Cumulative probability .function 

f Probability density function 

fc Filter cutoff (-3 db) frequency 

IDC Circumferential distortion factor 

IDL Fan stall margin ratio 

IDR Radial distortion factor 

KA2 Fan distortion factor 

K.RA Radial distortion factor 

KTH Circumferential distortion factor 

log Natural logarithm 

N Number of extremes 

N0 Number of zero crossings, Eq. (13) 

n Number of independent samples 

P Pressure 

R Normalized autocorrelation function 

r Inlet duct radius 

s Estimated standard deviation 

T Return  period, Eq. (10) 

t Reduced variate,  Eq. (6), or time 

x General probability variate 
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y General probability variate 

a General asymptote parameter 

ß General asymptote parameter 

At Time interval 

e Limiting distortion level, a/ß 

X Similarity parameter, Eq. (12) 

v General asymptote modal parameter 

a Standard deviation 

<t> Cumulative probability function 

SUPERSCRIPT 

A Estimate 
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